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Comparison of categorical distributions

Comparing counts per category between several experimental
conditions.
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counting (which already contains multiple observations).
What if a category appears significantly different but not the
others 7
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Gl 19 5
S 4 8
G2 25 36
M 3 1

A t-test on each category ? Would require replicates of the
counting (which already contains multiple observations).
What if a category appears significantly different but not the
others 7

—> t-test not adapted here.
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To compare count tables: x? test or (more precise): Fisher's
exact test.
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exact test.

Here: x? test p-value=0.005921; Fisher's exact test
p-value=0.003375.
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To compare count tables: x? test or (more precise): Fisher's
exact test.

Here: x? test p-value=0.005921; Fisher's exact test
p-value=0.003375.

x? test: imprecise for small numbers (less than ~10
observations in at least one category).
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To compare count tables: x? test or (more precise): Fisher's [Pl
exact test. distributions

Here: x? test p-value=0.005921; Fisher's exact test
p-value=0.003375.

x? test: imprecise for small numbers (less than ~10
observations in at least one category). Fisher's exact test:
calculations can be very long if the number of observations is
large (many possible permutation combinations).

Danger | These tests use raw counting data (no
normalization !).
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3|2 30 | 20 300 | 200
6|6 60 | 60 600 | 600
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p-value=1 p-value=0.2413 p-value=4.588 %10~

Normalization (e.g., percentage) would lose the information
on raw observation number.
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Comparing numerical distributions globally (not just their
means).
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Comparison of numerical distributions

Comparing numerical distributions globally (not just their
means).

Kolmogorov-Smirnov test: null hypothesis: the two datasets
were sampled from the same distribution (unknown, any
shape).
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Comparison of numerical distributions

Comparing numerical distributions globally (not just their
means).

Kolmogorov-Smirnov test: null hypothesis: the two datasets
were sampled from the same distribution (unknown, any
shape). Historical version of the test: for continuous
variables only.
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Kolmogorov-Smirnov test: null hypothesis: the two datasets
were sampled from the same distribution (unknown, any
shape).
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R commands used to generate these graphs: [link].



https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/numerical_distribution_comparison

Statistics session 3

Comparison of numerical distributions I

Comparing numerical distributions globally (not just their
means).
Comparison of

numerical
distributions

Kolmogorov-Smirnov test: null hypothesis: the two datasets
were sampled from the same distribution (unknown, any
shape).

Condition x : Condition y :

Number of observations

Number of observations
O 4N W s OO N

o N A O ©

—— —————————
5 10 15 20 0 5 10 15 20
Value Value

o

R commands used to generate these graphs: [link].
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Kolmogorov-Smirnov test: null hypothesis: the two datasets
were sampled from the same distribution (unknown, any
shape).
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R commands used to generate these graphs: [link].
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Kolmogorov-Smirnov test: null hypothesis: the two datasets
were sampled from the same distribution (unknown, any
shape).
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R commands used to generate these graphs: [link]. p-values:
t-test: 0.9005; Kolmogorov-Smirnov test: 0.02171.



https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/numerical_distribution_comparison

Comparison of numerical distributions

Comparing numerical distributions globally (not just their
means).

Kolmogorov-Smirnov test: null hypothesis: the two datasets
were sampled from the same distribution (unknown, any
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Comparison of numerical distributions

Comparing numerical distributions globally (not just their
means).

Kolmogorov-Smirnov test: null hypothesis: the two datasets
were sampled from the same distribution (unknown, any
shape).

— More sensitive, but harder to interpret (requires a
detailed mechanistic understanding of the process).
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~ 0.05xnumber of tests.
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Significance threshold of 0.05: expect ~5% false positives.

If you perform many tests (Is there a significant difference
between conditions “x"” and "y"” at day 1 7 At day 2 7 At
day 3 7...) the number of false positives will be

~ 0.05xnumber of tests.

— performing 20,000 tests, you would get ~1,000 false
positives (transcriptomics experiments would always be
wrong !).
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Multiple hypothesis testing

Significance threshold of 0.05: expect ~5% false positives.

If you perform many tests (Is there a significant difference
between conditions “x"” and "y"” at day 1 7 At day 2 7 At
day 3 7...) the number of false positives will be

~ 0.05xnumber of tests.

— performing 20,000 tests, you would get ~1,000 false
positives (transcriptomics experiments would always be
wrong !).

Difference between true and false positives: true positives
are reproducible (but: large experiments are hard to
reproduce in practice).

Statistics session 3

CWS

H. Seitz

Multiple
hypothesis testing




Multiple hypothesis testing

Empirical method: making significance threshold more and
more stringent if the number of tests increases.
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Empirical method: making significance threshold more and
more stringent if the number of tests increases.

Bonferroni correction: if n is the number of tested
hypotheses, and « is the usual threshold, then rather use
a/n as a threshold.
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Multiple hypothesis testing

Empirical method: making significance threshold more and
more stringent if the number of tests increases.

Bonferroni correction: if n is the number of tested
hypotheses, and « is the usual threshold, then rather use
a/n as a threshold. Easier to use: multiply every p-value by
n (and whenever the product is larger than 1, set it to 1)
rather than dividing the threshold.
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Empirical method: making significance threshold more and
more stringent if the number of tests increases.

Bonferroni correction: if n is the number of tested
hypotheses, and « is the usual threshold, then rather use
a/n as a threshold. Easier to use: multiply every p-value by
n (and whenever the product is larger than 1, set it to 1)
rather than dividing the threshold.

Benjamini-Hochberg correction: do not multiply all n
p-values by n, but: by an incrementally increasing factor
(from 1 to n) in the decreasing list of p-values.
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Multiple hypothesis testing

Empirical method: making significance threshold more and
more stringent if the number of tests increases.

Bonferroni correction: if n is the number of tested
hypotheses, and « is the usual threshold, then rather use
a/n as a threshold. Easier to use: multiply every p-value by
n (and whenever the product is larger than 1, set it to 1)
rather than dividing the threshold.

Benjamini-Hochberg correction: do not multiply all n
p-values by n, but: by an incrementally increasing factor
(from 1 to n) in the decreasing list of p-values. Less
stringent, less false negatives. Completely ad hoc principle,
but very popular in high-throughput molecular biology.
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Multiple hypothesis testing

Empirical method: making significance threshold more and
more stringent if the number of tests increases.

Bonferroni correction: if n is the number of tested
hypotheses, and « is the usual threshold, then rather use
a/n as a threshold. Easier to use: multiply every p-value by
n (and whenever the product is larger than 1, set it to 1)
rather than dividing the threshold.

Benjamini-Hochberg correction: do not multiply all n
p-values by n, but: by an incrementally increasing factor
(from 1 to n) in the decreasing list of p-values. Less
stringent, less false negatives. Completely ad hoc principle,
but very popular in high-throughput molecular biology.

A particular case: multiple t-tests against a common control
condition: Dunnett’s test.
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independently ?

Correlation tests




™
c
.0
7
@
4]
)
0
e
=
Ha
S
]
i
v

Correlation tests

Correlation tests

o Lo
%, 0, BgS, oo g ° [T
o 00 8 50w | o
Y ratny Wt f
o5 0 @95 © %% 0g8 °
3 SRR e w8l
° ou @ O
% 2 0 0B Lo P
omvw%%&m%uu °g, ® %
R o d8opo o
R % o BR800 %90° O
0 g 08 00°Fo © ®
© 08 g% £38 mm@
B e B 0P G O
8o %obo g 8050 %0 R 10
0°°° 8 %% @ e
D Gy 08 @080 o 2 o
B, g B Qo0 &° oo
0 0 ° 98086 ° o0
% 000 Co, 808 8 &|O
T T T T T '
o 1) o © o

R commands used to generate that graph: [link].
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R commands used to generate that graph: [link].

Pearson’s coefficient: r = 0.0352 (p-value=0.432).
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R commands used to generate that graph: [link].
Null hypothesis: correlation coefficient is 0.
Pearson’s coefficient: r = 0.0352 (p-value=0.432).
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R commands used to generate that graph: [link].

Null hypothesis: correlation coefficient is 0.

Pearson’s coefficient: r = 0.0352 (p-value=0.432). = +1
for a perfect and increasing linear correlation, and -1 if it is
decreasing; intermediary values for imperfect correlation.
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R commands used to generate that graph: [link].

Null hypothesis: correlation coefficient is 0.
Pearson’s coefficient: r = 0.0352 (p-value=0.432).
Kendall’s coefficient: 7 = 0.0203 (p-value=0.4968).
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Correlation tests

R commands used to generate that graph: [link].

Null hypothesis: correlation coefficient is 0.

Pearson’s coefficient: r = 0.0352 (p-value=0.432).
Kendall’s coefficient: 7 = 0.0203 (p-value=0.4968). = +1
if every point pair varies concordantly, and -1 if they all vary
discordantly; intermediary values otherwise.
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R commands used to generate that graph: [link].

Null hypothesis: correlation coefficient is 0.

Pearson’s coefficient: r = 0.0352 (p-value=0.432).
Kendall’s coefficient: 7 = 0.0203 (p-value=0.4968).
Spearman'’s coefficient: p = 0.0315 (p-value=0.4827).
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R commands used to generate that graph: [link].

Null hypothesis: correlation coefficient is 0.

Pearson’s coefficient: r = 0.0352 (p-value=0.432).
Kendall’s coefficient: 7 = 0.0203 (p-value=0.4968).
Spearman'’s coefficient: p = 0.0315 (p-value=0.4827).
Pearson’s coefficient on values’ ranks (looks for a
monotonous relationship, not necessarily linear).
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Pearson’s coefficient: r = 0.0846 (p-value=0.05882)
Kendall’s coefficient: 7 = 0.0126 (p-value=0.6732)
Spearman’s coefficient: p = 0.0435 (p-value=0.3313)
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Pearson’s coefficient: r = 0.0846 (p-value=0.05882)
Kendall’s coefficient: 7 = 0.0126 (p-value=0.6732)
Spearman’s coefficient: p = 0.0435 (p-value=0.3313)

— Need to have a mathematical model for the response y
to x (“is there a correlation between y and x2 ?").
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A classical trap: correlation does not imply causality.

A is a cause for B, or B is a cause for A ? Are A and B two
consequences of the same cause C 7 ...

Correlation tests
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Comparing more than 2 groups.
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Elaborated experimental design

Comparing more than 2 groups (e.g., “Between bakers,
teachers, policeman, nurses, is there a difference in the time
spent watching TV 7 *).
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R commands used to generate that graph: [link].
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Analysis of variance (ANOVA): conditions: residual normality
(= normality of observations within each group), variance
homogeneity, and independence between observations.

R commands used to generate that graph: [link].
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Analysis of variance (ANOVA): conditions: residual normality
(= normality of observations within each group), variance
homogeneity, and independence between observations.
ANOVA p-value=7.39x107% — an effet of job (without
further detail !).

R commands used to generate that graph: [link].
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Elaborated experimental design

“Post-hoc” tests (here: pairwise t-tests) to identify mutually
significantly different groups.
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“Post-hoc” tests (here: pairwise t-tests) to identify mutually
significantly different groups.

t-test p-values with Benjamini-Hochberg correction:

baker nurse | policeman
nurse 0.47648 - - Caborated
policeman | 0.03867 | 0.12304 - experimental
teacher | 0.00290 | 0.00036 | 5.2x107° )

Time spent watching TV (%)
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“Post-hoc” tests (here: pairwise t-tests) to identify mutually
significantly different groups.

t-test p-values with Benjamini-Hochberg correction:

baker nurse | policeman
nurse 0.47648 - - Caborated
policeman | 0.03867 | 0.12304 - experimental
teacher | 0.00290 | 0.00036 | 5.2x107° )

Danger | Start with ANOVA before engaging into pairwise
t-tests (high risk of false positives otherwise: multiple
hypothesis testing).




Elaborated experimental design

Several variables simultaneously (e.g., effect of age and
Drosophila strain on a physiological response).
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Several variables simultaneously (e.g., effect of age and
Drosophila strain on a physiological response).
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R commands used to generate that graph: [link].
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Multidimensional ANOVA (here: two variables — two-way
ANOVA).

R commands used to generate that graph: [link].
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Elaborated experimental design

Several variables simultaneously (e.g., effect of age and
Drosophila strain on a physiological response).
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Multidimensional ANOVA (here: two variables — two-way

ANOVA).
Same requirements than one-way ANOVA: normality,

homoscedasticity, independence.
R commands used to generate that graph: [link].
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Two-way ANOVA without interaction: p-values: strain:
1.47x107%; age: <2x1071°.
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Two-way ANOVA without interaction: p-values: strain:
1.47x107%; age: <2x1071°.
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If each variable has an effect, their interaction could have
one too.
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Two-way ANOVA without interaction: p-values: strain:
1.47x107%; age: <2x1071°.
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If each variable has an effect, their interaction could have
one too.

Two-way ANOVA with interaction: p-values: strain:
3.17x1077; age: <2x10716; their interaction: 6.25x107°.
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Two-way ANOVA without interaction: p-values: strain:
1.47x107%; age: <2x1071°.
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age: 5 days age: 15 days

If each variable has an effect, their interaction could have
one too.

Two-way ANOVA with interaction: p-values: strain:
3.17x1077; age: <2x10716; their interaction: 6.25x107°.
Interpretation: age has an effect, strain has an effect, and
aging affects these various strains differently.
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If conditions of applicability of ANOVA are not met:

» A mathematical transformation (ex.: log) could make
them being met.

» Non-parametric alternatives (robust to non-normality
and heteroscedasticity) for one-way ANOVA:
Kruskal-Wallis test (non-repeated mesurements),
Friedman test (repeated measurements on each
subject).
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If conditions of applicability of ANOVA are not met:

» A mathematical transformation (ex.: log) could make
them being met.

» Non-parametric alternatives (robust to non-normality
and heteroscedasticity) for one-way ANOVA:
Kruskal-Wallis test (non-repeated mesurements),
Friedman test (repeated measurements on each
subject).

If variables are not categorical (“job”, “Drosophila strain”)
but numerical with more than 2 levels: mathematical models
(e.g., linear models) to extract the effect of each variable.
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Conclusion I

» Basic concepts, generalizable to many statistical tests
(p-value, confidence interval, ...).

» Vocabulary (standard deviation # standard error;
normality; homoscedasticity; ...).

» — being able to find information by yourself for more
complicated cases.

Conclusion
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Summarized versions of this course, in French:

» Written: first part (published in July 2010 in Regard sur

la biochimie), second part (published in October 2010
in Regard sur la biochimie).

P> Video: "Les statistiques en biologie moléculaire ".

Supplements



https://www.igh.cnrs.fr/images/microsite/herve-seitz/files/Regard_sur_la_biochimie_statistiques_2010_partie_1.pdf
https://www.igh.cnrs.fr/images/microsite/herve-seitz/files/Regard_sur_la_biochimie_statistiques_2010_partie_2.pdf
https://www.youtube.com/watch?v=h52pOkJdJkA
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