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Comparison of categorical distributions

Comparing counts per category between several experimental
conditions.

Cond. 1 Cond. 2
G1 19 5
S 4 8

G2 25 36
M 3 1

A t-test on each category ? Would require replicates of the
counting (which already contains multiple observations).
What if a category appears significantly different but not the
others ?
−→ t-test not adapted here.
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Comparison of categorical distributions

To compare count tables: χ2 test or (more precise): Fisher’s
exact test.

Here: χ2 test p-value=0.005921; Fisher’s exact test
p-value=0.003375.

χ2 test: imprecise for small numbers (less than ≈10
observations in at least one category). Fisher’s exact test:
calculations can be very long if the number of observations is
large (many possible permutation combinations).

Danger ! These tests use raw counting data (no
normalization !).
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3 2
6 6
5 6

p-value=1

30 20
60 60
50 60

p-value=0.2413

300 200
600 600
500 600

p-value=4.588×10−7

Normalization (e.g., percentage) would lose the information
on raw observation number.
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Comparison of numerical distributions

Comparing numerical distributions globally (not just their
means).

Kolmogorov-Smirnov test: null hypothesis: the two datasets
were sampled from the same distribution (unknown, any
shape).

R commands used to generate these graphs: [link]. p-values:
t-test: 0.9005; Kolmogorov-Smirnov test: 0.02171.

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/numerical_distribution_comparison
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Comparing numerical distributions globally (not just their
means).

Kolmogorov-Smirnov test: null hypothesis: the two datasets
were sampled from the same distribution (unknown, any
shape). Historical version of the test: for continuous
variables only.

R commands used to generate these graphs: [link]. p-values:
t-test: 0.9005; Kolmogorov-Smirnov test: 0.02171.
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p-values:
t-test: 0.9005; Kolmogorov-Smirnov test: 0.02171.

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/numerical_distribution_comparison
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R commands used to generate these graphs: [link].

p-values:
t-test: 0.9005; Kolmogorov-Smirnov test: 0.02171.

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/numerical_distribution_comparison
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t-test: 0.9005; Kolmogorov-Smirnov test: 0.02171.
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shape).

−→ More sensitive, but harder to interpret (requires a
detailed mechanistic understanding of the process).
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Multiple hypothesis testing

Significance threshold of 0.05: expect ≈5% false positives.

If you perform many tests (Is there a significant difference
between conditions “x” and “y” at day 1 ? At day 2 ? At
day 3 ?...) the number of false positives will be
≈ 0.05×number of tests.

−→ performing 20,000 tests, you would get ≈1,000 false
positives (transcriptomics experiments would always be
wrong !).

Difference between true and false positives: true positives
are reproducible (but: large experiments are hard to
reproduce in practice).
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Multiple hypothesis testing

Empirical method: making significance threshold more and
more stringent if the number of tests increases.

Bonferroni correction: if n is the number of tested
hypotheses, and α is the usual threshold, then rather use
α/n as a threshold. Easier to use: multiply every p-value by
n (and whenever the product is larger than 1, set it to 1)
rather than dividing the threshold.

Benjamini-Hochberg correction: do not multiply all n
p-values by n, but: by an incrementally increasing factor
(from 1 to n) in the decreasing list of p-values. Less
stringent, less false negatives. Completely ad hoc principle,
but very popular in high-throughput molecular biology.

A particular case: multiple t-tests against a common control
condition: Dunnett’s test.
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Correlation tests

Pearson’s coefficient: r = 0.0352 (p-value=0.432).
Kendall’s coefficient: τ = 0.0203 (p-value=0.4968).
Spearman’s coefficient: ρ = 0.0315 (p-value=0.4827).
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Correlation tests

Principle: do two variables tend to co-vary, or do they vary
independently ?

Pearson’s coefficient: r = 0.0352 (p-value=0.432).
Kendall’s coefficient: τ = 0.0203 (p-value=0.4968).
Spearman’s coefficient: ρ = 0.0315 (p-value=0.4827).
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R commands used to generate that graph: [link].

Pearson’s coefficient: r = 0.0352 (p-value=0.432).
Kendall’s coefficient: τ = 0.0203 (p-value=0.4968).
Spearman’s coefficient: ρ = 0.0315 (p-value=0.4827).

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/correlation
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R commands used to generate that graph: [link].
Null hypothesis: correlation coefficient is 0.
Pearson’s coefficient: r = 0.0352 (p-value=0.432).

Kendall’s coefficient: τ = 0.0203 (p-value=0.4968).
Spearman’s coefficient: ρ = 0.0315 (p-value=0.4827).
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R commands used to generate that graph: [link].
Null hypothesis: correlation coefficient is 0.
Pearson’s coefficient: r = 0.0352 (p-value=0.432). = +1
for a perfect and increasing linear correlation, and -1 if it is
decreasing; intermediary values for imperfect correlation.

Kendall’s coefficient: τ = 0.0203 (p-value=0.4968).
Spearman’s coefficient: ρ = 0.0315 (p-value=0.4827).

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/correlation
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R commands used to generate that graph: [link].
Null hypothesis: correlation coefficient is 0.
Pearson’s coefficient: r = 0.0352 (p-value=0.432).
Kendall’s coefficient: τ = 0.0203 (p-value=0.4968). = +1
if every point pair varies concordantly, and -1 if they all vary
discordantly; intermediary values otherwise.

Spearman’s coefficient: ρ = 0.0315 (p-value=0.4827).

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/correlation
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R commands used to generate that graph: [link].
Null hypothesis: correlation coefficient is 0.
Pearson’s coefficient: r = 0.0352 (p-value=0.432).
Kendall’s coefficient: τ = 0.0203 (p-value=0.4968).
Spearman’s coefficient: ρ = 0.0315 (p-value=0.4827).
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R commands used to generate that graph: [link].
Null hypothesis: correlation coefficient is 0.
Pearson’s coefficient: r = 0.0352 (p-value=0.432).
Kendall’s coefficient: τ = 0.0203 (p-value=0.4968).
Spearman’s coefficient: ρ = 0.0315 (p-value=0.4827).
Pearson’s coefficient on values’ ranks (looks for a
monotonous relationship, not necessarily linear).

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/correlation
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Pearson’s coefficient: r = 0.0846 (p-value=0.05882)
Kendall’s coefficient: τ = 0.0126 (p-value=0.6732)
Spearman’s coefficient: ρ = 0.0435 (p-value=0.3313)

−→ Need to have a mathematical model for the response y
to x (“is there a correlation between y and x2 ?”).
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A classical trap: correlation does not imply causality.

A is a cause for B, or B is a cause for A ? Are A and B two
consequences of the same cause C ? ...
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Comparing more than 2 groups.
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Analysis of variance (ANOVA): conditions: residual normality
(=⇒ normality of observations within each group), variance
homogeneity, and independence between observations.
ANOVA p-value=7.39×10−6 −→ an effet of job (without
further detail !).
R commands used to generate that graph: [link].

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/one-way_ANOVA
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Elaborated experimental design
Comparing more than 2 groups (e.g., “Between bakers,
teachers, policeman, nurses, is there a difference in the time
spent watching TV ? “).
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Analysis of variance (ANOVA): conditions: residual normality
(=⇒ normality of observations within each group), variance
homogeneity, and independence between observations.
ANOVA p-value=7.39×10−6 −→ an effet of job (without
further detail !).
R commands used to generate that graph: [link].

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/one-way_ANOVA
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Analysis of variance (ANOVA): conditions: residual normality
(=⇒ normality of observations within each group), variance
homogeneity, and independence between observations.
ANOVA p-value=7.39×10−6 −→ an effet of job (without
further detail !).

R commands used to generate that graph: [link].

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/one-way_ANOVA
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Analysis of variance (ANOVA): conditions: residual normality
(=⇒ normality of observations within each group), variance
homogeneity, and independence between observations.

ANOVA p-value=7.39×10−6 −→ an effet of job (without
further detail !).

R commands used to generate that graph: [link].

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/one-way_ANOVA
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Analysis of variance (ANOVA): conditions: residual normality
(=⇒ normality of observations within each group), variance
homogeneity, and independence between observations.
ANOVA p-value=7.39×10−6 −→ an effet of job (without
further detail !).
R commands used to generate that graph: [link].

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/one-way_ANOVA


Statistics session 3

H. Seitz

Comparison of
categorical
distributions

Comparison of
numerical
distributions

Multiple
hypothesis testing

Correlation tests

Elaborated
experimental
design

Conclusion

Supplements

Elaborated experimental design

“Post-hoc” tests (here: pairwise t-tests) to identify mutually
significantly different groups.

t-test p-values with Benjamini-Hochberg correction:

baker nurse policeman
nurse 0.47648 - -

policeman 0.03867 0.12304 -
teacher 0.00290 0.00036 5.2×10−6
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“Post-hoc” tests (here: pairwise t-tests) to identify mutually
significantly different groups.

t-test p-values with Benjamini-Hochberg correction:

baker nurse policeman
nurse 0.47648 - -

policeman 0.03867 0.12304 -
teacher 0.00290 0.00036 5.2×10−6

Danger ! Start with ANOVA before engaging into pairwise
t-tests (high risk of false positives otherwise: multiple
hypothesis testing).
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Elaborated experimental design
Several variables simultaneously (e.g., effect of age and
Drosophila strain on a physiological response).
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Multidimensional ANOVA (here: two variables −→ two-way
ANOVA).
Same requirements than one-way ANOVA: normality,
homoscedasticity, independence.
R commands used to generate that graph: [link].

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/two-way_ANOVA
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Multidimensional ANOVA (here: two variables −→ two-way
ANOVA).
Same requirements than one-way ANOVA: normality,
homoscedasticity, independence.

R commands used to generate that graph: [link].

https://github.com/HKeyHKey/Master_classes/blob/main/Statistics_in_biomedical_research/two-way_ANOVA
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ANOVA).
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Elaborated experimental design
Two-way ANOVA without interaction: p-values: strain:
1.47×10−4; age: <2×10−16.

V
al

ue

10

15

20

25

30

age: 5 days age: 15 days

Berlin Canton-S OregonR yw Berlin Canton-S OregonR yw

If each variable has an effect, their interaction could have
one too.

Two-way ANOVA with interaction: p-values: strain:
3.17×10−7; age: <2×10−16; their interaction: 6.25×10−6.
Interpretation: age has an effect, strain has an effect, and
aging affects these various strains differently.
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If conditions of applicability of ANOVA are not met:

I A mathematical transformation (ex.: log) could make
them being met.

I Non-parametric alternatives (robust to non-normality
and heteroscedasticity) for one-way ANOVA:
Kruskal-Wallis test (non-repeated mesurements),
Friedman test (repeated measurements on each
subject).

If variables are not categorical (“job”, “Drosophila strain”)
but numerical with more than 2 levels: mathematical models
(e.g., linear models) to extract the effect of each variable.
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I Non-parametric alternatives (robust to non-normality

and heteroscedasticity) for one-way ANOVA:
Kruskal-Wallis test (non-repeated mesurements),
Friedman test (repeated measurements on each
subject).

If variables are not categorical (“job”, “Drosophila strain”)
but numerical with more than 2 levels: mathematical models
(e.g., linear models) to extract the effect of each variable.
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Conclusion

I Basic concepts, generalizable to many statistical tests
(p-value, confidence interval, ...).

I Vocabulary (standard deviation 6= standard error;
normality; homoscedasticity; ...).

I −→ being able to find information by yourself for more
complicated cases.
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Summarized versions of this course, in French:
I Written: first part (published in July 2010 in Regard sur

la biochimie), second part (published in October 2010
in Regard sur la biochimie).

I Video: ”Les statistiques en biologie moléculaire ”.

https://www.igh.cnrs.fr/images/microsite/herve-seitz/files/Regard_sur_la_biochimie_statistiques_2010_partie_1.pdf
https://www.igh.cnrs.fr/images/microsite/herve-seitz/files/Regard_sur_la_biochimie_statistiques_2010_partie_2.pdf
https://www.youtube.com/watch?v=h52pOkJdJkA
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